大学士考试网

考研分类

2012考研数学:概率论与数理统计怎么复习

考研数学  时间: 2019-03-09 10:51:44  作者: 匿名 

尽管概率统计和线性代数所占分数比例完全相同。但是概率论与数理统计部分得分一般均低于线性代数部分,因为大多数考生在复习和答卷时,把概率论与数理统计放在最后,常因时间紧迫,思虑不周而造成准备不充分,进而导致答卷失误。概率论与数理统计部分是大多数考生在数学统考中的一个弱项,是关系考生在选拔性考试中竞争力强弱的关键一环,对中等水平的考生来说,尤为如此。我认为处于现阶段的考生在数学科目的复习安排上,要先从最薄弱的一环开始,也就是说,在目前整个数学课程复习之初,要按照考研大纲规定的内容,先将概率论与数理统计后面,要一节一节地复习,一个概念一个概念地领会,一个题一个题地做,以达到正确理解和掌握基本概念、基本理论和基本方法。要特别指出的是在这一阶段复习时,不要轻视对教科书中一般习题的练习,一定要配合各章节内容做一定数量的习题,总结一般题型的解题方法与思路。这一阶段一般最迟应在国庆节之前完成。尽管这一阶段仅仅是概率论与数理统计乃至数学全面复习的先导,但它是为开始全面冲刺复习打基础的阶段。在此过程中,不要过多地去追求难题、技巧,要脚踏实地、全面仔细地复习,从10年的真题告诉考生,凡是考纲上有的内容,就要不遗漏,出现掌握和会用的考点要弄会、搞透。这个阶段虽然涉及综合性提高性题型不多,但基础打得好将为下阶段全面冲刺复习创造一个有利前提,更何况,很多综合性、灵活性强的考题,其关键之处也在于考生是否能够适当运用有关的最基本概念、理论和方法。

下面我总结一下常考题型:

常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:

(1)确定事件间的关系,进行事件的运算;

(2)利用事件的关系进行概率计算;

(3)利用概率的性质证明概率等式或计算概率;

(4)有关古典概型、几何概型的概率计算;

(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;

(6)有关事件独立性的证明和计算概率;

(7)有关独重复试验及伯努利概率型的计算;

(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;

(9)由给定的试验求随机变量的分布;

(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;

(11)求随机变量函数的分布(12)确定二维随机变量的分布;

(13)利用二维均匀分布和正态分布计算概率;

(14)求二维随机变量的边缘分布、条件分布;

(15)判断随机变量的独立性和计算概率;

(16)求两个独立随机变量函数的分布;

(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;

(18)求随机变量函数的数学期望;

(19)求两个随机变量的协方差、相关系数并判断相关性;

(20)求随机变量的矩和协方差矩阵;

(21)利用切比雪夫不等式推证概率不等式;

(22)利用中心极限定理进行概率的近似计算;

(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;

(24)推证某些统计量(特别是正态总体统计量)的分布;

(25)计算统计量的概率;

(26)求总体分布中未知参数的矩估计量和极大似然估计量;

(27)判断估计量的无偏性、有效性和一致性;

(28)求单个或两个正态总体参数的置信区间;

(29)对单个或两个正态总体参数假设进行显著性检验;

(30)利用χ2检验法对总体分布假设进行检验。

猜你喜欢

精选专题