大学士考试网

考研分类

2012考研数学:概率复习重点知识归纳

考研数学  时间: 2019-03-09 10:52:34  作者: 匿名 
考研数学的概率部分也是考查的重点所在,下面考研专家将概率中的复习重点逐一归纳如下,以方便2011年的考生对照复习。

一、随机事件与概率

重点难点:

重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式

难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算

常考题型:

(1)事件关系与概率的性质

(2)古典概型与几何概型

(3)乘法公式和条件概率公式

(4)全概率公式和Bayes公式

(5)事件的独立性

(6)贝努利概型

二、随机变量及其分布

重点难点

重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布

难点:不同类型的随机变量用适当的概率方式的描述,随机变量函数的分布

常考题型

(1)分布函数的概念及其性质

(2)求随机变量的分布律、分布函数

(3)利用常见分布计算概率

(4)常见分布的逆问题

(5)随机变量函数的分布

三、多维随机变量及其分布

重点难点

重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布

难点:多维随机变量的描述方法、两个随机变量函数的分布的求解

常考题型

(1)二维离散型随机变量的联合分布、边缘分布和条件分布

(2)二维离散型随机变量的联合分布、边缘分布和条件分布

(3)二维随机变量函数的分布

(4)二维随机变量取值的概率计算

(5)随机变量的独立性

四、随机变量的数字特征

重点难点

重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数

难点:各种数字特征的概念及算法

常考题型

(1)数学期望与方差的计算

(2)一维随机变量函数的期望与方差

(3)二维随机变量函数的期望与方差

(4)协方差与相关系数的计算

(5)随机变量的独立性与不相关性

五、大数定律和中心极限定理

重点难点

重点:中心极限定理

难点:切比雪夫不等式、依概率收敛的概念。

常考题型

(1)大数定理

(2)中心极限定理

(3)切比雪夫(Chebyshev)不等式

六、数理统计的基本概念

重点难点

重点:样本函数与统计量,样本分布函数和样本矩

难点:抽样分布

常考题型

(1)正态总体的抽样分布

(2)求统计量的数字特征

(3)求统计量的分布或取值的概率

七、参数估计

重点难点

重点:矩估计法、最大似然估计法、置信区间及单侧置信区间

难点:估计量的评价标准

常考题型

(1)求参数的矩估计和最大似然估计

(2)估计量的评价标准(数学一)

(3)正态总体参数的区间估计(数学一)

八、假设检验(数学一)

重点难点

重点:单个正态总体的均值和方差的假设检验

难点:假设检验的原理及方法

常考题型

猜你喜欢

精选专题