大学士考试网

考研分类

2013考研数学:无穷小的阶与应用

考研数学  时间: 2019-03-09 10:52:46  作者: 匿名 
微积分还有一个名称,叫“无穷小分析”。

两个无穷小的商求极限,既是典型的未定式计算,又有深刻的理论意义。即“无穷小的比较”。

如果商的极限为1,则分子分母为等价无穷小。极限为0 ,分子是较分母高阶的无穷小。极限为其它实数,分子分母为同阶无穷小。

为了考试,要尽可能记住一些常用的等价无穷小。

利用 Δy ~ d y (数学一,二用泰勒公式)生成等价无穷小 ——
  当 f ′(x0)≠ 0 时 ,Δy ~ d y ,在原点计算Δy和d y ,得到常用的4个等价无穷小
  sin x ~ x ; ln(1+x)~ x ;e xp(x)-1 ~ x  ;√(1+ x)-1 ~ x ∕ 2
  最好再记住    1-cos x ~ x ² ∕ 2     (e xp(x)记以e为底的指数函数)

等价无穷小的复合拓展 ——

x→0 时,α (x)是无穷小,则 sin α (x) ~α (x) ; ln(1+α (x))~ α (x) ,……

  标准阶无穷小与无穷小的阶 ——

高等微积分中,把 x→0(或0+)时,幂函数  y = (x的µ次方) 称为µ 阶无穷小。与它同阶的无穷小,都是µ阶无穷小。于是,常用的1阶无穷小有, 
   x , sin x  , tg x  , arcsin x  , arctg x  , e xp(x)-1

常用的2 阶无穷小有  1- cos x 
等价无穷小的差为高阶无穷小 ——
  值得记一记的有(常见的三阶无穷小)  x − sin x  ~  x ³  / 6  
x − lnx(1+ x)~  x² / 2    ,   exp(x)-(1 + x) ~ x²/2! ,……
  不同阶的有限个无穷小的线性组合是无穷小。(“多项式型无穷小”。)它与其中最低阶的那个无穷小同阶。
比如            y = ln(1+x)+ 1-cos x  是1 阶无穷小
再复杂一点,     5x − sin x - cos x + 1 = 4x + (1- cos x )+ (x − sin x ),是1阶无穷小

由于“等价无穷小的差”也可以说成是“无穷小的和”,或“无穷小的线性组合”,所以,“无穷小的和”,或“无穷小的线性组合”,其阶数都是未定式。

无穷小的积是高阶无穷小。    

无穷小(在区间背景下)也是有界变量。所以,“无穷小与有界变量的积”是无穷小,但阶数是未定式。
比如,   x→0 时, x² + 3x  与 x 同为1阶。实际上,x ² + 3x = x(x+3),后因子极限非0
  但 x sin(1/x)的阶数不能确定。
        在阶的意识下对0 / 0型未定式作结构分析与调整 ——

例1  x→∞, 求  lim x sin(2x/(x²+1))

分析   x→∞ 时,2x/(x²+1)是无穷小,sin(2x /(x²+1))~(2x /(x²+1),可替换。

猜你喜欢

精选专题